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We study a discrete-time dynamic multi-way matching model. There are finitely many agent types that

arrive stochastically and wait to be matched. State-of-the-art dynamic matching policies in the literature

require the knowledge of all system parameters to determine an optimal basis of the fluid relaxation, and focus

on controlling the number of waiting agents using only matches in the optimal basis (Kerimov et al., 2021a,b;

Gupta, 2021). In this paper, we propose a primal-dual policy that schedule matches for future arrivals based

on an estimator for the dual solution. Our policy does not require the knowledge of optimal bases, and is the

first to achieve constant regret at all times under unknown arrival rates. In addition, we show that when the

arrival rates are known, the primal-dual policy achieves the optimal scaling as the lower-bound described

in Kerimov et al. (2021a,b). Furthermore, we find that when the arrival rates are known, the primal-dual

policy can significantly outperform alternative dynamic matching policies in numerical simulations.
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1. Introduction

We consider a centralized dynamic matching market. There are finite types of agents. Agents arrive

at the market over time and exit it once they are matched. Only certain sets of agent types can be

feasibly matched and these matching constraints are described by a network, comprised of agent

types (nodes) and possible match types (hyperedges). A match consists of one or several agent

types and generates some heterogeneous reward when realized. The key distinguishing feature of

the dynamic matching market we consider is that agents act effectively as both demand and supply

(i.e., agents arrive to be matched, and the planner needs multiple agent types to match). This

differs from the traditional online matching model (e.g., Mehta et al., 2013) in which the supply

types are always available upfront while the demand types arrive sequentially.

There is a recent surge of interest in studying the dynamic matching markets under various

modeling assumptions (Akbarpour et al., 2020; Aouad and Saritaç, 2020; Kerimov et al., 2021a,b;

Gupta, 2021; Blanchet et al., 2022). Centralized dynamic matching markets naturally arise in

various applications such as kidney exchange markets, online carpooling platforms, and online labor

markets. In a kidney exchange market, patient-donor pairs arrive dynamically, where each pair is
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viewed as an agent in our model. After a patient-donor pair arrives, the planner would attempt

to match them with another pair or through a multi-way kidney exchange. The matching rewards

depend on the biological compatibility among the patient-donor pairs. In a carpooling platform,

riders arrive continuously over time. The planner matches riders to share a ride and the reward

depends on their locations and destinations. In an online labor market, workers and jobs arrive

dynamically, and the planner’s task is to match the workers and the jobs, for which the reward

depends on the needs of the jobs and the experience and skills of the workers. Note that in an online

labor market, the matching network is bipartite, as workers can only be matched with jobs. On

the contrary, in a kidney exchange market or an online carpooling platform, the matching network

may not be bipartite and may contain hyperedges that allow multi-way matches.

Surprisingly, a recent line of work (Kerimov et al., 2021a,b; Gupta, 2021) reveals the immense

power of knowing the basic feasible solutions of the fluid (linear programming) relaxation of

the dynamic matching problem. After restricting to matches corresponding to the optimal basic

matches and removing the “redundant” matches, various simple designs and greedy-like policies

(including periodic resolving, greedy longest-queue, sum-of-squares policies) can achieve bounded

regrets at all times compared to the best offline policy, under the so-called general position gap

(GPG) assumption, i.e., the optimal basic matches are stable under small perturbations of the

agent arrival rates. The implications of these breakthrough results are far-reaching, pointing to a

new paradigm of policy design for dynamic matching in which the sophisticated dynamic matching

problem can be reduced to a simpler queueing control problem after restricting matches to the

optimal basic matches.

Despite the theoretical breakthroughs, the policies that restrict matches to the optimal basic

matches have some practical drawbacks. First, the planner may not have the exact knowledge of

the arrival rates and thus, cannot determine the optimal basic matches. Second, policies relying

on optimal basic matches are problematic when multiple optimal solutions exist, as some agents

may be unfairly penalized by the tie-breaking rules. These motivated us to propose a new class of

primal-dual policy that achieves constant regret at all times for both known and unknown arrival

rates. Our primal-dual policy avoids restricting matches to only the optimal basic matches thus

does unfairly penalize specific agent types by the tie-breaking rules. Also, as the primal-dual policy

uses more match types, in numerical simulations, in the case where arrival rates are known, it

achieves a lower regret and has fewer waiting agents in the system than the policies of Kerimov

et al. (2021b); Gupta (2021).

Our primal-dual policies introduce a Lagrangian multiplier (also can be interpreted as shadow

price) for each agent type and pick the best match based on the reduced reward by subtracting
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out the total shadow prices associated. The shadow price for a given agent type is dynamically

adjusted and serves as a control signal for market thickness: it rises when fewer agents of the given

type are waiting and thus decreases the matching rate. The primal-dual policy in the existing

literature (Nazari and Stolyar, 2018) sets the shadow price to be proportional to the inventory

(difference between the number of arrived agents and agents scheduled to be matched) and only

achieves regret of o(T ) for a given time T . In contrast, to achieve O(1) regret, our policies compute

the shadow price using both the weighted inventories and the dual solution of the “sample-averaged

approximated” fluid relaxation. In addition, our policies introduce for the inventories a time-varying

weight that is useful in establishing constant regrets when the time horizon length is unknown.

At a high level, the dual solution enables us to combine the technique of controlling the reward of

scheduled matches from Nazari and Stolyar (2018), with the technique of controlling the inventories

of agents from (Huang and Neely, 2009). The primal-dual policy of Nazari and Stolyar (2018)

suggests that the scheduled matches grow closer to the fluid solution as the weight factor on

inventory becomes small, but in their policy, a small weight factor leads to large inventories, which

in turn leads to a large gap between the scheduled matches and the matches that can be actually

realized. In our primal-dual policies, leveraging on the GPG assumption which turns out to be

equivalent to the locally polyhedral condition of Huang and Neely (2009), we find that, the sample-

average approximated dual solution provides enough negative drift to ensure that the inventories

across agent types stay low, regardless of the magnitude of the weight on the inventories. This

allows us, in turn, to select an appropriate time-varying weight to attain a constant regret at all

times.

1.1. Related Literature

In addition to the aforementioned papers, there is a vast literature on stochastic and dynamic

matching models. We next describe several streams of literature and discuss how they differ/relate

to our model.

Online Matching and Network Revenue Management. This stream of literature studies

a setting with agents arriving online and need to be immediately matched with the available offline

resources. In these online models, researchers focus on either the competitive ratio or regret. There

is extensive literature analyzing competitive ratio of online matching problems, starting with a

seminal paper by Karp et al. (1990). In the interest of space, we refer interested readers to Mehta

et al. (2013); Ma and Simchi-Levi (2020) for a more comprehensive review of competitive ratio

analysis in online matching and network revenue management models.
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Closer to our paper are the regret analysis for network revenue management (NRM) models.

In (Talluri and Van Ryzin, 1998), the authors show that the bid-price policy achieves O(
√
T )

regret in the (quantity-based) NRM model. The regret is improved by Jasin and Kumar (2012),

who show that a re-solving policy achieves O(1) regret, under the assumption that the “fluid

relaxation” has a non-degenerate primal optimal solution. The constant regret analysis has since

been generalized to online matching problems (Balseiro et al., 2021), and NRM models without

distributional knowledge of the arrivals (Jasin, 2015; Chen et al., 2022). We note that the online

matching and network revenue management may be viewed as dynamic matching models considered

in this paper with less stringent constraints, as offline resources in these models can be allocated at

any time during the time horizon, whereas the resources/agents in dynamic matching models can

be only matched after they arrive. Indeed, recently, researchers have identified policies achieving

constant regret for those dynamic models without the non-degeneracy of the fluid relaxation (see,

e.g., Arlotto and Gurvich, 2019; Bumpensanti and Wang, 2020; Vera et al., 2021). In contrast, for

the dynamic matching model considered in this model, without the non-degeneracy assumption,

the lower-bound for the regret is Ω(
√
T ) (Kerimov et al., 2021a). We also note that the recent

work of Gupta (2021) suggests that much of the theoretical regret for the sum-of-squares policy

established in the dynamic matching models hold in online matching and NRM models with offline

resources.

Bipartite (Matching) Queues. Similar to online bipartite matching problems, in the bipartite

queueing literature, agents form two partitions, where each match consists of exactly one agent

in each partition. The bipartite Queueing models differ from the online bipartite matching model

as there are randomness on both sides of partitions. One example of bipartite queueing models

is the parallel server system, where one partition of agents acting as customers and the other

partition of agents acting as servers. The parallel server system has been extensively studied under

different operational settings (see, e.g., Harrison, 1998; Mandelbaum and Stolyar, 2004; Gurvich

and Whitt, 2010; Ward and Armony, 2013), and we refer interested readers to the recent work

of Afeche et al. (2022) for additional coverages in this line of work. Motivated by ride-sharing

platforms, recent papers also consider variations of the parallel server system, where vehicles queue

to be matched and exit upon matching that mimics an open network (Özkan and Ward, 2020) or

vehicles become busy/available at different locations in a process that mimics a closed network

(Banerjee et al., 2018). Closer to our work are the systems with two-sided queueing systems, where

all agents not matched stay in a queue. For two-sided queueing systems, researchers have studied

matching policies with different objectives, such as minimizing the holding costs (Buỳić and Meyn,
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2015), maximizing the match-dependent rewards Kerimov et al. (2021b), and maximizing the total

rewards minus the holding costs (Aveklouris et al., 2021).

Dynamic Matching on Random Graphs. While the bipartite queueing literature typically

assumes the matching configuration to be fixed, a different stream of literature considers agents

arrive over time and form viable matches with existing agents probabilistically. For example, Ander-

son et al. (2017) and Ashlagi et al. (2019) consider the waiting time for the agents under asymptotic

regimes, Akbarpour et al. (2020) consider the total number of matched agents with the additional

feature of agent abandonment, while Kanoria (2022) considers the distance between matched pairs

in a spatial matching model.

Dynamic Multi-Way Matching with Fixed Graphs. In this paper, we focus on reward

maximization in dynamic multi-matching models with fixed matching configurations. Aouad and

Saritaç (2020) study a two-way dynamic matching model with agent departures and propose a

policy that achieves a constant percent of the upper-bound in steady state. For regret analysis,

Nazari and Stolyar (2018) present a primal-dual policy that achieves a regret of o(T ). Kerimov et al.

(2021a) presents a batching policy to improve the regret to O(1) at all times, under the assumption

that the fluid relaxation has an acyclic and non-degenerate primal solution. Gupta (2021) shows

that the sum-of-squares policy achieves O(1) regret under the same non-degeneracy condition,

but without the acyclic assumption. In this paper, we also propose O(1) regret policies, but our

work differs from (Kerimov et al., 2021a; Gupta, 2021) in several significant ways. Both (Kerimov

et al., 2021a; Gupta, 2021) requires the knowledge of arrival rates, which they use to find the fluid

solution and restrict their policies to use only the match types in the fluid solution. In contrast,

we propose primal-dual policies that do not require the knowledge of arrival rates. Moreover, in

our policies, any match type m in M may be utilized depending on the state at the time, and

as a result, leverages on the flexibility of additional matching possibilities and achieves superior

empirical performances compared to the policies analyzed in (Kerimov et al., 2021a; Gupta, 2021).

2. Model Setup

The setup of our model is similar to (Kerimov et al., 2021a). There is a finite set of agent types

A= [n] = {1,2, . . . , n}, and a finite set of matches M= [d]. We consider discrete time arrivals such

that at each time t ∈ N+, exactly one agent arrives. Let λ = {λi}ni=1 ∈ Rn
+ and Ai(t) denote the

number of arrivals of type i at time t. The arrival of agent type i is with probability λi ≥ 0, where∑n

i=1 λi = 1. Once agents arrive, they will wait in the queue until matched by a central planner or

decision maker. There is no initial customer in the queue waiting to be matched.
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For each match m ∈M, let A(m) denote the set of agent types participating in the match m.

Let M ∈ {0,1}n×d denote the network matrix, where for any i∈ [n], let Mi denote its ith row such

that for m∈ [d], Mim = 1{i∈A(m)}. Also, we define

B = max
m∈M

|A(m)|+1 . (1)

At each period t, the central decision maker decides whether to realize one or multiple matches

in M, where match m can be realized only if type i agent is waiting for each i ∈ A(m). Once a

match m ∈M is realized, the agents participating in the match leave the system, and the match

itself generates a reward rm. We define rmax = maxm∈M rm and make the following assumption

throughout the paper about the rewards.

Assumption 1. For each agent i∈A, there exists a “self-match” for i, i.e., there is m∈M such

that A(m) = {i}. Let ri be the unit reward of self-match agent i, and we have

1. ri ≥ 0.

2. For each m∈M where |A(m)|> 1, we have rm >
∑

i∈A(m) ri.

3. There exists at least one m∈M where |A(m)|> 1.

We remark that Assumption 1 effectively allows us to focus on all of the non-trivial dynamic

matching instances that was studied by Kerimov et al. (2021a); Gupta (2021). Specifically, the first

bullet point in Assumption 1 restricts to dynamic matching instances where the decision maker

may “discard” the agents without penalty, and this is exactly the set of matching instances studied

by Kerimov et al. (2021a); Gupta (2021). The second bullet point removes the match types that

are always sub-optimal, and finally, the third bullet point in Assumption 1 eliminates the trivial

instance where only self-matches are allowed.

2.1. Performance Measure

Like Kerimov et al. (2021a), we measure the performance of a dynamic matching policy at any

time period during the entire time horizon [0, T ]. Specifically, at time period t, the expected regret

of a policy π at time t is measured by

E [R∗,t −Rπ,t] ,

where R∗,t and Rπ,t represent the rewards under the hindsight optimal policy (that optimizes the

reward up to time t) and policy π, respectively.

Note that for a fixed t, the hindsight optimal reward can be achieved by a simple policy that waits

for all agents to arrive during the first t periods, then solves an optimization problem to determine
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the set of matches that maximizes the overall rewards.1 Thus, a more meaningful performance

measure for policy is its regret at all times. Formally, for any policy π, its regret at all times is

measured by

sup
0≤t≤T

E [R∗,t −Rπ,t] .

Throughout the paper, we say that a policy achieves constant regret (at all times) if the above

quantity is independent of T . As we shall see, our constant regret (at all times) policy will also

keep the expected queue lengths for agents waiting in the system to be small at any time.

3. Main Results
3.1. Fluid Relaxation and General Position Gap

To design an effective policy and analyze its regret at all times, we use a standard fluid relaxation

of the dynamic matching problem. Under the fluid relaxation, we have the following deterministic

optimization problem: maxx r⊤x
s.t. Mx= λ

x∈X

 , (2)

where X = {x |x∈Rd
≥0,
∑

m∈M xm ≤ 1}. Note that the constraint
∑

m∈M xm ≤ 1 in X is non-binding

and hence redundant, as
∑

i∈[n] λi = 1, and Assumption 1 implies that any optimal solution of

(2) must contain non-self-matches. Nevertheless, the constraint is useful because it ensures the

existence of a bounded optimal solution when we relax Mx= λ with Lagrangian multipliers.

Assuming that x∗ is an optimal solution of (2), the value t · r⊤x∗ forms a natural upper-bound

for E [R∗,t], the expected rewards for the hindsight optimal policy. To see this, for a fixed t, let y(ω)

denote the matches realized by the offline policy under a random scenario ω, and by Assumption 1,

we can assume that y(ω) match all arrivals up to time t. Thus, we have that ME[y(ω)] = tλ, and

by optimality of x∗, we have

t · r⊤x∗ ≥ r⊤E [y(ω)] =E [R∗,t] . (3)

Finally, this implies that the regret for policy π over the entire time horizon [0, T ] is no larger than

sup
0≤t≤T

E
[
t · r⊤x∗ −Rπ,t

]
. (4)

Next, we define the Lagrangian relaxation of (2) as

Lλ(U) =max
x∈X

{
r⊤x−U⊤ (Mx−λ)

}
=max

x∈X

(
r⊤ −U⊤M

)
x+U⊤λ . (5)

1 Although the optimization problem is NP-hard, for large t, we can solve a fractional matching problem then round
into an integer solution with a bounded loss of reward.
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When λ is fixed, we let L(U) =Lλ(U) and the corresponding (Lagrangian) dual problem is formu-

lated as

min
U∈Rn

L(U) . (6)

Throughout the paper, we define the notion of general position gap (GPG), which measures how

much λ may change (in terms of the ℓ2 norm) without changing the unique optimal solution for

the dual formulation.

Definition 1 (General Position Gap). Let Bϵ(λ) be the ball centered at λ with radius ϵ under the

ℓ2 norm, i.e., Bϵ(λ) = {λ̂ : ∥λ̂−λ∥2 ≤ ϵ}. We say that λ has a GPG of (at least) ϵ, if there exists U∗

that is the unique optimal solution of (6) for any λ̂∈Bϵ(λ). If there are multiple optimal solutions

of (6), then we say that λ has a GPG of zero.

We remark that a similar notion of GPG has been considered by Gupta (2021) and Kerimov

et al. (2021a). In Gupta (2021), GPG is defined using the total variation ball Bϵ,TV(λ) = {λ̂∈∆n :

∥λ̂− λ∥1 ≤ ϵ}, where ∆n denote the (n− 1)-dimensional probability simplex. In Kerimov et al.

(2021a), GPG is defined as the smallest value among all variables in a basic optimal solution of the

fluid relaxation (2). While the aforementioned definitions of GPG differ slightly, all are describing

the stability of the optimal solution for the dual problem subject to change in λ. Indeed, in either

Kerimov et al. (2021a), Gupta (2021) or this paper, a positive GPG is equivalent to the uniqueness

of the dual solution.

A key motivation for our particular definition of GPG is that having a GPG of ϵ (under Def-

inition 1) is equivalent to Lλ(U)− Lλ(U
∗) ≥ ϵ∥U −U∗∥2 for all U ∈ Rn, which is known as the

locally polyhedral condition (Huang and Neely, 2009). The next proposition formally establishes

this equivalence, and furthermore, shows that a similar equivalence holds for GPG defined in ℓp

norm for any p≥ 1.

Proposition 1. Let ∥·∥ and ∥·∥∗ denote any pair of norm and the dual norm. The following two

conditions are equivalent for any fixed ϵ > 0:

1. U∗ is an optimal solution to minU Lλ̂(U) for all
∥∥∥λ̂−λ

∥∥∥≤ ϵ;

2. Lλ(U)−Lλ(U
∗)≥ ϵ∥U −U∗∥∗ for all U ∈Rn.

The proof of Proposition 1 is in Section C.1 in Appendix C. At a high level, the locally polyhedral

condition is key for us to design a primal-dual policy that keeps the dual variables close to U∗,

which turns out to be crucial in our regret analysis.

By Hölder’s inequality, the difference between the ℓ1 and ℓp for any p≥ 1 is no greater than a

factor of n. Thus, most of our analyses apply to GPG defined in ℓp norm for any p≥ 1. This further
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illustrates the connection between our GPG definition and the definition in Gupta (2021), which

uses the ℓ1 norm. Finally, the GPG defined in Kerimov et al. (2021a) can be used to establish a

lower-bound on our GPG, we refer interested readers to Proposition 1 in Appendix A for further

discussions.

3.2. The Primal-Dual Policy

We describe our primal-dual policy, which is summarized as Algorithm 1. At a high level, our

primal-dual policy is divided into two components, a scheduling policy that schedule matches based

on a Lagrangian relaxation maxx∈X (r⊤ −U⊤M)x for some dual estimates U , and a realization

policy that realize the scheduled matches when there are sufficient agents. We note that our primal-

dual policy bears similarities to the policy studied in Nazari and Stolyar (2018). However, their

policy only achieves a regret of o(T ), for any κ > 0, while we identify primal-dual policy that

achieves regret independent of T under a wide range of settings.

Next, we provide the intuitions behind our policy by explaining our primal-dual policy during

period t. Recall that Ai(t) denotes the number of arrivals of type i at time t. Let x(t) ∈ Rd and

y(t)∈Rd and denote the vector of scheduled and realized match at time t, respectively, with x(0)

initialized as the zero vector. Let vector δ(t)∈Rn denote the difference between the total number

of arrivals (of each type) minus the total number of agents (of each type) that are needed for the

scheduled matches at time t, with δ(0) initialized as the zero vector. For any t∈N+, we update

δ(t) = δ(t− 1)+Mx(t− 1)−A(t) . (7)

It is important to note that δi(t) can be either positive or negative. We will refer to −δ(t) as the

(virtual) inventory of agents at period t, as −δi(t) represents the difference between the number

of agents of type i that have arrived by time t and the total number of agents of type i required

for all matches scheduled before time t.

Let λ̂(t) denote the empirical arrival rate based on the arrivals from periods 1 to t. We solve the

linear program

min
U∈Rn

U⊤λ̂(t), s.t.
∑

i∈A(m)

Ui ≥ rm, ∀m, (8)

and take its optimal solution as Û(t). Intuitively, Û(t), is an optimal solution of the dual problem

(6) when λ is replaced by λ̂(t) (see Appendix B for a more formal discussion). Next, we update

U(t), the dual estimates (i.e., Lagrangian multipliers) during period t∈N+, using δ(t), the negative

inventory of agents, and Û(t). Formally, we update U(t) as

U(t) = Û(t)+
δ(t)

Vt

, (9)
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where Vt is some policy (time-varying) parameter that is determined at time zero.

With U(t) updated, the scheduling policy determines vector x(t), with the following simple

procedure: if r−U(t)⊤M ≤ 0, then we set x(t) to be the zero vector; and otherwise, we set x(t)

to be the m∗-th standard basis vector (i.e., xm∗(t) = em∗), where m∗ is the index of one of the

largest entries in r−U(t)⊤M with tie breaks arbitrarily. Note that x(t) corresponds to the optimal

solution of the Lagrangian relaxation with multiplier U(t), that is

x(t)∈ argmax
x∈X

(
r⊤ −U(t)⊤M

)
x+U(t)⊤λ= argmax

x∈X

(
r⊤ −U(t)⊤M

)
x. (10)

After scheduling matches corresponding to x(t), we next describe the realization policy, which

determines y(t), the vector representing the matches realized at time t. We remark that the main

focus of our paper is on the scheduling policy, as any myopic realization policy that goes through

all scheduled unrealized matches in arbitrary order will suffice in our analysis. For concreteness,

we describe one such myopic realization policy.

For each m, let the number of scheduled match m that are not yet realized, to be Wm, where

Wm =
∑t

s=1 (xm(s)− ym(s)). If Wm > 0 and m can be realized with the agents waiting in the

system, i.e.,
∑t

s=1 (Ai(s)−Miy(s))> 0 for any i ∈A(m), then the policy realizes all the matches

of type m until the waiting agents for one of the types in A(m) becomes zero. Once the realization

policy goes over each match type m, our policy finishes period t and moves to period t+1.

Our primal-dual policy is summarized as Algorithm 1. Some readers may have noted that if Û(t)

is replaced with an arbitrarily fixed value across t, the primal-dual policy is roughly a stochastic

sub-gradient method for approximately solving Lagrangian dual problem (6). More precisely, if

we set Û(t) ≡ Z instead of the optimal solution of (8), and Vt ≡ V ; the variables U(t) would be

updated according to U(t) =U(t−1)+ 1
V
(Mx(t−1)−A(t)) with initialization U(1) =Z. This is a

stochastic subgradient method with fixed step size 1
V

for solving the Lagrangian dual problem (6),

as Mx(t− 1)−A(t) is a stochastic subgradient of L(U(t− 1)). However, such a policy does not

yield constant regret (unless Z = U∗), as both δ(t) (negative inventory) and the actual expected

number of agents waiting in queues grows with T . Indeed, one of the key intuitions is that if Û(t)

is selected to (almost) equal to U∗, then we also have U(t)≈U∗, which facilitates our analysis of δ

(negative inventory) and the actual expected number of agents waiting in queues can be bounded

effectively.

Next, we present our main results on the regret of the primal-dual policies that fall under the

framework of Algorithm 1.
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Algorithm 1 Dynamic match scheduling.

1: Input: {Vt}∞t=1, δ(0) = 0 and x(0) = 0

2: for each t= 1,2, · · ·T do

3: Observe arrival A(t)

4: The scheduling process:

5: Update δ(t) = δ(t− 1)+Mx(t− 1)−A(t)

6: Let Û(t) be an optimal solution of (8)

7: Update U(t) = Û(t)+ δ(t)

Vt

8: if r−U(t)⊤M ≤ 0 then

9: Set x(t) to the zero vector

10: else

11: Set x(t) to m∗-th standard basis vector, where m∗ is the index of the maximum value

in vector r−U(t)⊤M

12: end if

13: The realization process:

14: Initialize y(t) = 0 and let Wm =
∑t

s=1 (xm(s)− ym(s)).

15: for each m∈M with Wm > 0 do

16: Let Im =mini∈A(m)

∑t

s=1 (Ai(s)−Miy(s))

17: Update ym(t) = ym(t)+min{Wm, Im}

18: end for

19: end for

Theorem 1. Consider the primal-dual policy π described in Algorithm 1, where {Vt}Tt=1 is mono-

tonically increasing, and
∑T

t=1 1/Vt <∞. Suppose that λ has a GPG of ϵ, then we have

sup
0≤t≤T

E [R∗,t −Rπ,t]≤O

(
B+

√
nBrmax

ϵ2

)
, (11)

where we recall that B =maxm∈M |A(m)|+1, and rmax =maxm∈M rm.

Theorem 1 suggests that the primal-dual policy achieves regret independent of T , thus providing

the first constant regret dynamic matching policy to the setting with unknown arrival rates. If we

fix the network matrix M and reward vector r, then the regret of our policy scales on the order of

1/ϵ2 when ϵ becomes small.

We also remark that there are plenty of choices for {Vt}∞t=1 to ensure that Algorithm 1 achieves

constant regret. One natural choice is to have Vt = O(T ), but this requires some knowledge of
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the time horizon. Alternatively, we can choose Vt = t2, then Algorithm 1 achieves constant regret

without any knowledge of λ and T . Next, we show that the regret can be improved (in terms of

1/ϵ), with the knowledge of the arrival rates.

Corollary 1. Suppose that λ is known in advance. Let U∗ be the optimal solution of the Lagrangian

dual problem (6), and replace Û(t) with U∗ for all t in Algorithm 1. Consider the corresponding

primal-dual policy π, with {Vt}∞t=1 is monotonically increasing, and
∑∞

t=1 1/Vt <∞. Suppose that

λ has a GPG of ϵ, then we have

sup
0≤t≤T

E [R∗,t −Rπ,t]≤O

(
B+

√
nBrmax

ϵ

)
. (12)

Corollary 1 demonstrates that our policy matches the best regret scaling in terms of ϵ (Kerimov

et al., 2021a; Gupta, 2021), when λ is known. We remark that the O(1/ϵ) scaling is in fact the

best possible, as illustrated in an example of (Kerimov et al., 2021a, Fig. 5) with fixed M and r.

Furthermore, (Kerimov et al., 2021a, Example 3.1) shows that when λ has a GPG of 0, which is

equivalent to (5) having multiple optimal solutions, the regret at all times is at least
√
T . Next,

we show that our primal-dual policy, under the appropriate Vt, achieves the regret of
√
T without

the guarantee that λ has a GPG of ϵ.

Corollary 2. Suppose that λ is known in advance but does not necessarily have a positive GPG.

Let U∗ be an optimal solution of the Lagrangian dual problem (6), and replace Û(t) =U∗ for all t

in Algorithm 1. Consider the corresponding primal-dual policy π, with Vt =
√
t then we have

sup
0≤t≤T

E [R∗,t −Rπ,t]≤O
(√

T
)
. (13)

The proof of Theorem 1 and Corollary 1 are given in Section 4, while the proof of Corollary 2 is

deferred to Section C.2 in Appendix C. As a by-product of our proofs, we also obtain a bound on

the expected number of waiting agents in the system, which has the same magnitude as the regret.

This will be further discussed in Section 4.5.

3.3. Alternative Interpretations of Our Primal-Dual Policy

Our new primal-dual policy also has an interesting interpretation under the framework of the drift-

plus-penalty method, which is widely for stabilizing a queueing network while minimizing the time

average of a network penalty function (See Neely (2010) and the references therein for detailed

discussions). Specifically, given a Lyapunov function V which is often defined as the sum of squares

of the queue sizes, let ∆(t) denote the (conditional) Lyapunov drift, that is the expected change of

V from time slot t to t+1. Then at each time slot t, we take a control action to greedily minimize

∆(t) + V ×P (t), where P (t) is a given network penalty function, and V is a non-negative weight
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parameter, allowing for a tradeoff between the reduction of the queue sizes and minimization of

the penalty function.

In our setting, since we want to reduce the inventory of agents, it is natural to define Lya-

punov function as the sum of squares of δi(t), that is, V(t) = 1
2
∥δ(t)∥22. Using (7), we can readily

upper-bound the Lyapunov drift ∆(t) by B+ ⟨δ(t),Mx(t)−λ⟩ . Further, we aim to maximize the

cumulative reward, so we take the negative of the reward as the penalty function. However, here

instead of using the reward function ⟨r,x⟩ per se, we let P (t) = −L(Û(t), x(t)), where L(U,x) =

⟨r,x⟩−⟨U,Mx−λ⟩ is the Lagrangian function and Û(t) is the plug-in estimator of the optimal dual

variable U∗. Finally, we use a time-varying weight parameter Vt to attain a smooth tradeoff between

reducing inventories and maximizing the rewards. Combining all these ingredients together, we

choose a scheduling action x(t) to minimize the following drift-plus-penalty bound:

x(t)∈ argmin
x∈X∩Nd

⟨δ(t),Mx−λ⟩−Vt ×L
(
Û(t), x

)
. (14)

In view of (9), the above objective function is equal to−Vt×L (U(t), x). Therefore, the minimization

problem (14) is equivalent to the maximization of L (U(t), x), which exactly coincides with our

primal-dual policy as per (10).

Note that as t→∞, Û(t) will coincide with U∗ with high probability and Vt is chosen to diverge.

Therefore, as t→∞, our primal-dual policy rephrased in terms of (14) reduces to the following

“restricted” max-weight policy. First, it restricts to the set of matches m achieving the highest

reduced reward rm −
∑

i∈A(m)U
∗
i .

2 Then it schedules a match m in the set with the maximum

weight – the largest total inventory
∑

i∈A(m)(−δi(t)). We remark that this “restricted” max-weight

policy bears some similarity to the “restricted” longest-queue policy proposed in Kerimov et al.

(2021a), which restricts to the set of matches corresponding to the optimal basic variables and picks

a match that contains the longest queue – the agent type with the largest inventory maxi(−δi(t)).

Note that in Kerimov et al. (2021a), by focusing on the optimal basic variables, the restricted set

of matches can be much smaller and hence the scheduling policy is less flexible. Moreover, the

longest-queue policy is often less effective in reducing the total inventories than the max-weight

policy (Dimakis and Walrand, 2006).

4. Analysis of Our Primal-Dual Policy

Throughout the section, we consider primal-dual policy π where Û(t) and Vt are selected according

to Theorem 1. We define {Ft} as the natural filtration associated with the agent arrival process

2 In fact, it can be shown that the highest reduced reward is at most 0, i.e., r−M⊤U∗ ≤ 0.
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up to and including period t. We first present a high level roadmap of our regret analysis. Recall

that the regret at time t is no larger than E [t ⟨r,x∗⟩−Rπ,t]. We decompose the quantity as

E [t ⟨r,x∗⟩−Rπ,t] = t ⟨r,x∗⟩−
t∑

s=1

E [⟨r,x(s)⟩]︸ ︷︷ ︸
(I)

+
t∑

s=1

E [⟨r,x(s)⟩− ⟨r, y(s)⟩]︸ ︷︷ ︸
(II)

, (15)

and bound (I) and (II) separately. The upper-bound for (I) is based on the celebrated drift-plus-

penalty technique in stochastic network optimization by Neely (2010), whereas the upper-bound

for (II) is based on the structure of the matching model and the property of the realization policy.

Both upper-bounds depend on δ(t), the inventory of agents, which we analyze through Lyapunov

analysis that relies crucially on the condition that λ has a GPG of ϵ.

Before proceeding to the roadmap, we first derive a pair of technical lemmas that will be useful

for the analysis. The first lemma bounds the maximum change in the inventory of agents in one

period.

Lemma 1. For any t≥ 1, it holds that

∥Mx(t)−A(t+1)∥22 ≤ ∥Mx(t)−A(t+1)∥1 ≤max
m∈[d]

|A(m)|+1≜B.

Proof. Note that

∥Mx(t)∥1 =
n∑

i=1

d∑
m=1

Mimxm(t) =
d∑

m=1

|A(m)|xm(t)≤max
m∈[d]

|A(m)|
d∑

m=1

xm(t)≤max
m∈[d]

|A(m)|.

Therefore ∥Mx(t)−A(t+1)∥1 ≤maxm∈[d] |A(m)|+1=B. Moreover, since ∥Mx(t)−A(t+1)∥∞ ≤

1, it follows that ∥Mx(t)−A(t+1)∥22 ≤ ∥Mx(t)−A(t+1)∥1 ∥Mx(t)−A(t+1)∥∞ ≤B. Q.E.D.

Next, we derive a lemma that upper-bounds the “violation” of complementary slackness between

dual variables U(t) and primal variables x(t) in terms of the instantaneous reward difference.

Lemma 2. For any t≥ 1, it holds that

⟨U(t),Mx(t)−λ⟩ ≤ ⟨r,x(t)−x∗⟩ .

Proof. By the optimality of x(t) given in (10),〈
r−M⊤U(t), x(t)

〉
≥
〈
r−M⊤U(t), x∗〉 .

By rearranging the terms, we deduce that

⟨r,x(t)−x∗⟩ ≥ ⟨U(t),Mx(t)−Mx∗⟩= ⟨U(t),Mx(t)−λ⟩ ,

where the last equality holds by the constraint that Mx∗ = λ. Q.E.D.
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4.1. Rewards of Scheduled Matches

In this subsection, we introduce a bound on the first term of (15). Specifically, we present Propo-

sition 2 that bounds t ⟨r,x∗⟩ −
∑t

s=1E [⟨r,x(s)⟩], the difference between the expected rewards of

scheduled matches and the fluid relaxation up to period t. The analysis is based on the celebrated

drift-plus-penalty technique in stochastic network optimization by Neely (2010), with two addi-

tional significant innovations. First, we allow for time-varying Vt, provided that it is monotonically

increasing. Second, we incorporate the estimation error of dual estimator Û(t) into the analysis.

These are critical for establishing a constant regret with an unknown time horizon T and arrival

rate λ.

Proposition 2. Suppose Vt is monotonically increasing. Under the primal-dual policy π, we have

t ⟨r,x∗⟩−
t∑

s=1

E [⟨r,x(s)⟩]≤
t∑

s=1

B+1

2Vs

+
√
nrmaxE [∥δ(t)∥2] + 2Brmax

t∑
s=1

P
{
Û(s) ̸=U∗

}
, (16)

where rmax is the maximum reward that one match can generate.

Proof. Define the potential function

V(s) =
1

2
∥δ(s)∥22 . (17)

Our proof proceeds by bounding the expected drift of V(s) in terms of the reward difference

E [⟨r,x(s)⟩]− ⟨r,x∗⟩. Then by taking a certain form of a telescoping sum of the expected drifts

across all times and using the non-negativity of the potential function V(s), we arrive at a bound

to the cumulative reward difference.

Recall that δ(s+1)= δ(s)+Mx(s)−A(s+1). Therefore, for s≥ 1,

∥δ(s+1)∥22 −∥δ(s)∥22 = ∥Mx(s)−A(s+1)∥22 +2 ⟨δ(s),Mx(s)−A(s+1)⟩

≤B+2 ⟨δ(s),Mx(s)−A(s+1)⟩

=B+2Vs

〈
U(s)− Û(s),Mx(s)−A(s+1)

〉
, (18)

where the first inequality follows by Lemma 1 and the last equality holds due to δ(s) = Vs(U(s)−

Û(s)).

Then, we obtain from (18) that

E [V(s+1)−V(s) | Fs]≤
1

2
B+VsE

[〈
U(s)− Û(s),Mx(s)−A(s+1)

〉
| Fs

]
,

where Fs is the natural filtration associated with the agent arrival process up to and including

period s. Since E [A(s+1) | Fs] = λ, it follows from Lemma 2 that

E [⟨U(s),Mx(s)−A(s+1)⟩ | Fs] = ⟨U(s),Mx(s)−λ⟩ ≤ ⟨r,x(s)−x∗⟩ .
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Combining the last two displayed equations yields that

E [V(s+1)−V(s) | Fs]≤
1

2
B+Vs ⟨r,x(s)−x∗⟩−VsE

[〈
Û(s),Mx(s)−A(s+1)

〉
| Fs

]
.

Taking the expectation over Fs and dividing Vs over both hand sides, we get that

1

Vs

E [V(s+1)−V(s)]≤ B

2Vs

+E [⟨r,x(s)⟩]−⟨r,x∗⟩−E
[〈

Û(s),Mx(s)−A(s+1)
〉]

. (19)

Now, by summing over 1≤ s≤ t on (19), we get

t∑
s=1

E
[
1

Vs

(V(s+1)−V(s))

]
≤

t∑
s=1

B

2Vs

+
t∑

s=1

E [⟨r,x(s)⟩]− t ⟨r,x∗⟩

−
t∑

s=1

E
[〈

Û(s),Mx(s)−A(s+1)
〉]

.

Moreover, we can bound the left hand side from below as

t∑
s=1

1

Vs

(V(s+1)−V(s)) =
1

Vt

V(s+1)+
t∑

s=2

(
1

Vs−1

− 1

Vs

)
V(s)− 1

V1

V(1)≥− 1

2V1

,

where the last inequality holds because Vs is monotonically increasing and V(1) = 1
2
∥δ(1)∥22 =

1
2
.

Combining the last two displayed equations and re-arranging the terms yields that

t ⟨r,x∗⟩−
t∑

s=1

E [⟨r,x(s)⟩]≤
t∑

s=1

B

2Vt

+
1

2V1

−
t∑

s=1

E
[〈

Û(s),Mx(s)−A(s+1)
〉]

. (20)

It remains to bound the last term in the RHS of (20). Note that

t∑
s=1

〈
Û(s),Mx(s)−A(s+1)

〉
=

t∑
s=1

⟨U∗,Mx(s)−A(s+1)⟩+
t∑

s=1

〈
Û(s)−U∗,Mx(s)−A(s+1)

〉
.

By the definition of δ(t),

t∑
s=1

⟨U∗,Mx(s)−A(s+1)⟩= ⟨U∗, δ(t)⟩ ≥−∥U∗∥2 ∥δ(t)∥2 ≥−
√
nrmax ∥δ(t)∥2 ,

where the inequalities hold by the Cauchy-Schwartz inequality and ∥U∗∥2 ≤
√
nrmax in view

of Lemma 9. Furthermore,

t∑
s=1

〈
Û(s)−U∗,Mx(s)−A(s+1)

〉
=

t∑
s=1

〈
Û(s)−U∗,Mx(s)−A(s+1)

〉
1{Û(s)̸=U∗}

≥−B
t∑

s=1

∥∥∥Û(s)−U∗
∥∥∥
∞
1{Û(s) ̸=U∗}

≥−2Brmax

t∑
s=1

1{Û(s) ̸=U∗},
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where the inequalities hold by the Cauchy-Schwartz inequality, ∥Mx(s)−A(s+1)∥1 ≤B in view

of Lemma 1, and
∥∥∥Û(s)−U∗

∥∥∥
∞
≤
∥∥∥Û(s)

∥∥∥
∞
+ ∥U∗∥∞ ≤ 2rmax in view of Lemma 9. Combining the

last three displayed equations, we get that

t∑
s=1

〈
Û(s),Mx(s)−A(s+1)

〉
≥−

√
nrmax ∥δ(t)∥2 − 2Brmax

t∑
s=1

1{Û(s) ̸=U∗}.

Finally, taking expectations over both hand sides of the last displayed equation and substituting

it into (20) yields the desired conclusion (16). Q.E.D.

4.2. Realized Matches and Queue Lengths

Next, we establish a bound on the second term of (15). Recall that y(t) denotes the vector of the

realized match at time t. By the updating rule of y(t), we have

t∑
s=1

y(s)≤
t∑

s=1

x(s), (21)

t∑
s=1

My(s)≤
t∑

s=1

A(s), (22)

where the first inequality holds because our policy cannot realize any match that is not scheduled,

and the second inequality holds because the policy cannot match agents that have not yet arrived.

Define Mi = {m : i∈A(m)}. First, we present a lemma showing that for any m in which inequal-

ity (21) is strict, then we must have some agent type i such that m∈Mi, and all agents of type i

are realized by matches.

Lemma 3. Fix any m ∈ M such that
∑t

s=1 ym(s) <
∑t

s=1 xm(s). Then there must exist some

i∈A(m) such that
∑t

s=1Ai(s) =
∑t

s=1Miy(s) =
∑t

s=1

∑
m∈Mi

ym(s), and moreover

t−1∑
s=1

∑
m∈Mi

xm(s)−
t∑

s=1

∑
m∈Mi

ym(s) = δi(t) . (23)

Proof. According to our realization policy, we must have either
∑t

s=1 ym(s) =
∑t

s=1 xm(s) or

mini∈A(m)

∑t

s=1Ai(s)−
∑t

s=1

∑
m∈Mi

ym(s) = 0. Thus, by assumption, there must exist some i ∈

A(m) such that
∑t

s=1Ai(s) =
∑t

s=1

∑
m∈Mi

ym(s). Further, it follows that

t−1∑
s=1

∑
m∈Mi

xm(s)−
t∑

s=1

∑
m∈Mi

ym(s) =
t−1∑
s=1

∑
m∈Mi

xm(s)−
t∑

s=1

Ai(s) = δi(t),

where the last equality holds by the definition of δ(t) in (7). Q.E.D.

Next, we apply Lemma 3 to bound the difference between the total number of scheduled and

realized matches, and subsequently, the difference between the virtual reward and the actual reward

in terms of δ(t).
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Proposition 3. For any t≥ 1,

t∑
s=1

⟨r,x(s)⟩−
t∑

s=1

⟨r, y(s)⟩ ≤ rmax (∥δ(t)∥1 +B) .

Proof. Let M0 ⊂M denote the set of match m such that
∑t

s=1 ym(s)<
∑t

s=1 xm(s). Let A0 ⊂ [n]

be the set of agent type i such that (23) in Lemma 3 holds. By Lemma 3, for any m ∈M0, there

exists i∈A(m) such that i∈A0. It follows that M0 ⊂∪i∈A0Mi. Therefore,

∑
m∈M

t∑
s=1

(xm(s)− ym(s)) =
∑

m∈M0

t∑
s=1

(xm(s)− ym(s))

≤
∑
i∈A0

∑
m∈Mi

(
t∑

s=1

xm(s)−
t∑

s=1

ym(s)

)
=
∑
i∈A0

δi(t)+
∑
i∈A0

∑
m∈Mi

xm(t)

≤ ∥δ(t)∥1 +B , (24)

where the second equality follows because (23) holds for every i∈A0; and the last inequality holds

because
∑

i∈A0

∑
m∈Mi

xm(t)≤
∑

m∈M |A(m)|xm(t)≤B
∑

m∈M xm(t)≤B. It follows that

t∑
s=1

⟨r,x(s)⟩−
t∑

s=1

⟨r, y(s)⟩=
∑
m∈M

rm

t∑
s=1

(xm(s)− ym(s))

≤ rmax

∑
m∈M

t∑
s=1

(xm(s)− ym(s))

≤ rmax (∥δ(t)∥1 +B) ,

where the first inequality holds due to (21) and the last inequality holds due to (24). Q.E.D.

4.3. Inventory of Agents

With the upper-bounds on both terms in (15) via Proposition 2 Proposition 3, we now analyze δ(t),

i.e., the inventory (of agents), which lies critically in both upper-bounds. To bound the expected

norm of δ(t), we first derive a negative drift for ∥δ(t)∥2, similar (in spirit) to the result as (Huang

and Neely, 2009, Theorem 1), irrespective of the choice of weight Vt.

Lemma 4. Suppose that λ has a GPG of ϵ. Fix any constants η and D satisfying

0< η < ϵ, D≥ η, and B− 2(ϵ− η)D≤ η2. (25)

For any t≥ 1, whenever ∥δ(t)∥2 ≥D and Û(t) =U∗,

E [∥δ(t+1)∥2 | Ft]≤ ∥δ(t)∥2 − η .
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Proof. It follows from (18) that when Û(t) =U∗,

E
[
∥δ(t+1)∥22 | Ft

]
≤ ∥δ(t)∥22 +B+2Vt ⟨U(t)−U∗,Mx(t)−λ⟩ . (26)

We next claim that

⟨U(t)−U∗,Mx(t)−λ⟩ ≤L(U∗)−L(U(t)). (27)

To see this, on the one hand, by the optimality of x(t) given in (10),

L(U(t)) = ⟨r,x(t)⟩+ ⟨U(t), λ−Mx(t)⟩ .

On the other hand, by the feasibility of x(t),

L(U∗)≥ ⟨r,x(t)⟩+ ⟨U∗, λ−Mx(t)⟩ .

Combining the last two displayed equations yields the desired (27).

Combining (26) and (27), we get that when Û(t) =U∗,

E
[
∥δ(t+1)∥22 | Ft

]
≤ ∥δ(t)∥22 +B− 2Vt (L(U(t))−L(U∗)) (28)

≤ ∥δ(t)∥22 +B− 2Vtϵ∥U(t)−U∗∥2

= ∥δ(t)∥22 +B− 2ϵ∥δ(t)∥2

where the second inequality holds, by the assumption that λ has a GPG of ϵ and Proposition 1.

It follows that, whenever ∥δ(t)∥2 ≥D and Û(t) =U∗,

E
[
∥δ(t+1)∥22 | Ft

]
≤ ∥δ(t)∥22 +B− 2η ∥δ(t)∥2 − 2(ϵ− η)∥δ(t)∥2

≤ ∥δ(t)∥22 − 2η ∥δ(t)∥2 + η2

= (∥δ(t)∥2 − η)
2
,

where the last inequality holds by (25). By Jensen’s inequality and the fact that D≥ η, the desired

result follows. Q.E.D.

With the negative drift for ∥δ(t)∥2 established, we can now bound E [∥δ(t)∥2] using a classical

drift analysis. To this end, we need the following general lemma, which is essentially a restatement

of the result in Gupta (2021).

Lemma 5. Let Ψ(t) be an {Ft}-adapted stochastic process satisfying:

• Bounded variation: |Ψ(t+1)−Ψ(t)| ≤K;

• Expected Decrease: E [Ψ(t+1)−Ψ(t) | Ft]≤−η , when Ψ(t)≥D;
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• Ψ(0)≤K +D.

Then, we have

E [Ψ(t)]≤K

(
1+

⌈
D

K

⌉)
+K

(
K − η

2η

)
. (29)

The proof of Lemma 5 is deferred to Section C.3 in Appendix C. Now, combining Lemma 4

with Lemma 5, we are ready to bound E [∥δ(t)∥2].

Proposition 4. Suppose that λ has a GPG of ϵ. Then for any t≥ 1, we have

E [∥δ(t)∥2]≤ 2
√
B

t−1∑
s=1

P
{
Ûs ̸=U∗

}
+

12B

ϵ
+6

√
B . (30)

Proof. Pick η= ϵ/2 and D= 3B−η2

2(ϵ−η)
∨ η. For t≥ 1, define

γ(t) = ∥δ(t)∥2 − 2
√
B

t−1∑
s=1

1{Ûs ̸=U∗}.

Note that

|∥δ(t+1)∥2 −∥δ(t)∥2| ≤ ∥δ(t+1)− δ(t)∥2 = ∥Mx(t)−A(t+1)∥2 ≤
√
B, (31)

where the last inequality holds by Lemma 1. It follows that

|γ(t+1)− γ(t)|=
∣∣∣∥δ(t+1)∥2 −∥δ(t)∥2 − 2

√
B1{Û(t)̸=U∗}

∣∣∣≤ 3
√
B,

implying that the variation of γ(t) in each period does not exceed 3
√
B.

Now, suppose that γ(t)≥D. If Û(t) =U∗, we have

E [γ(t+1)− γ(t) | Ft] =E [∥δ(t+1)∥2 −∥δ(t)∥2 | Ft]≤−η ,

where the last inequality follows by the fact that ∥δ(t)∥2 ≥ γ(t)≥D and Lemma 4. If Û(t) ̸=U∗,

γ(t+1)− γ(t) = ∥δ(t+1)∥2 −∥δ(t)∥2 − 2
√
B ≤−η ,

where the last inequality holds due to (31) and
√
B ≥ 1 ≥ η. Therefore, we have that

E [γ(t+1)− γ(t) | Ft]≤−η , when γ(t)≥D.

Further, γ(1) = ∥δ(1)∥22 = 1. By applying (29) in Lemma 5, we have that for all t≥ 1

E [γ(t)]≤K

(
1+

⌈
D

K

⌉)
+K

(
K − η

2η

)
≤ 2K +D+

K2

2η
,

where K = 3
√
B. Hence, for any t≥ 1,

E [∥δ(t)∥2]≤ 2
√
B

t−1∑
s=1

P
{
Ûs ̸=U∗

}
+E [γ(t)]≤ 2

√
B

t−1∑
s=1

P
{
Ûs ̸=U∗

}
+

12B

ϵ
+6

√
B.

Q.E.D.
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4.4. Proof of Main Results

We are almost ready to prove our main results. Next, we present the last technical lemma we

need to bound the regret in terms of the GPG and instance primitives. The lemma bounds the

estimation error probability of Û(t) when λ has a positive GPG.

Lemma 6. Suppose λ has a GPG of ϵ. Then, we have

∞∑
t=1

P
{
Û(t) ̸=U∗

}
≤ 16

ϵ2
. (32)

The proof of Lemma 6 is deferred to Section C.4 in Appendix C. Now, we complete the proof

of Theorem 1, which bounds the regret in the case with unknown arrival rates.

Proof of Theorem 1. Recall that E [R∗,t]≤ t ⟨r,x∗⟩ and Rπ,t =
∑t

s=1 ⟨r, y(s)⟩ . Therefore,

E [R∗,t −Rπ,t]≤ t ⟨r,x∗⟩−
t∑

s=1

E [⟨r, y(s)⟩]

= t ⟨r,x∗⟩−
t∑

s=1

E [⟨r,x(s)⟩] +
t∑

s=1

E [⟨r,x(s)⟩− ⟨r, y(s)⟩] .

By assumption, {Vt}∞t=1 is monotonically increasing. Thus, by Proposition 2,

t ⟨r,x∗⟩−
t∑

s=1

E [⟨r,x(s)⟩]≤
t∑

s=1

B+1

2Vs

+
√
nrmaxE [∥δ(t)∥2] + 2Brmax

t∑
s=1

P
{
Û(s) ̸=U∗

}
≤O

(
B+

√
nBrmax

(
1

ϵ
+

t∑
s=1

P
{
Û(s) ̸=U∗

}))
,

where the last inequality holds by invoking the assumption
∑∞

t=1 1/Vt <∞ and Proposition 4.

Moreover, by Proposition 3,

t∑
s=1

E [⟨r,x(s)⟩− ⟨r, y(s)⟩]≤ rmax (E [∥δ(t)∥1] +B)

≤ rmax

(√
nE [∥δ(t)∥2] +B

)
≤O

(
√
nBrmax

(
1

ϵ
+

t∑
s=1

P
{
Û(s) ̸=U∗

}))
,

where the second inequality holds due to ∥δ(t)∥1 ≤
√
n∥δ(t)∥2 and the last inequality follows by

Proposition 4. Combining the last three displayed equations yields that

E [R∗,t −Rπ,t]≤O

(
B+

√
nBrmax

(
1

ϵ
+

t∑
s=1

P
{
Û(s) ̸=U∗

}))
≤O

(
B+

√
nBrmax

ϵ2

)
, (33)

where the last inequality follows from the first inequality of Lemma 6. Q.E.D.

In the case where the arrival rates are unknown, we set Û(t) = U∗; hence Corollary 1 readily

follows from (33).
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4.5. Discussion on the Queue Lengths

In this subsection, we demonstrate that the expected number of agents waiting in the system is

bounded, i.e., the queue lengths are stable over time, as a consequence of our analysis of δ(t). Let

q(t) denote the number of agents waiting in the system at the end of time period t, that is,

q(t) =
t∑

s=1

(A(s)−My(s)) . (34)

The following lemma bounds the total number of waiting agents in terms of δ(t).

Lemma 7.

∥q(t)∥1 ≤ (B+1)∥δ(t)∥1 +B2.

Proof. Because qi(t)≥ 0, ∥q(t)∥1 =
∑

i∈[n] qi(t) It follows from (34) and (7) that

q(t) =−δ(t)+
t−1∑
s=1

Mx(s)−
t∑

s=1

My(s).

Therefore,

∑
i∈[n]

qi(t) =−
n∑

i=1

δi(t)+
∑
m∈M

|A(m)|

(
t−1∑
s=1

xm(s)−
t∑

s=1

ym(s)

)

≤−
∑
i∈[n]

δi(t)+ max
m∈M

|A(m)|
∑
m∈M

t∑
s=1

(xm(s)− ym(s))

≤−
∑
i∈[n]

δi(t)+B (∥δ(t)∥1 +B)≤ (B+1)∥δ(t)∥1 +B2,

where the last inequality holds due to (24). Q.E.D.

Lemma 7 immediately implies that

E [∥q(t)∥1]≤ (B+1)E [∥δ(t)∥1] +B2 ≤ (B+1)
√
nE [∥δ(t)∥2] +B2.

Applying the the bounds on E [∥δ(t)∥2] from Proposition 4 and Lemma 6, we have

E [∥q(t)∥1]≤O

(
√
nB

(
1

ϵ
+

t∑
s=1

P
{
Û(s) ̸=U∗

})
+B2

)
≤O

(√
nB

ϵ2
+B2

)
.

5. Numerical Results

In this section, we numerically test our primal-dual policies. In our experiment, we test our primal-

dual policy where Û(t) is chosen according to Theorem 1 and Corollary 1, respectively. When Û(t)

is chosen according to Theorem 1, we refer to the primal-dual policy as primal-dual blind to reflect

that the policy is blind to the actual arrival rate. When Û(t) is fixed to U∗ as suggested Corollary
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1, we refer to it as primal-dual (with known arrival rates). For both primal-dual blind and primal-

dual with known arrival rates, we pick Vt = T . In our computational experience, the choice of Vt

does not play a significant role when Vt is selected to be t2 or T or even
√
T . It is only when Vt is

chosen to be much smaller than T then it starts to change regret and queue length. Because our

primal-dual policies are non-batching policies that attempt to realize matches at every period, we

simulate two other non-batching policies as benchmarks: (i) the sum-of-squares policy of Gupta

(2021) and (ii) the maximum-queue-sum policy, 3 a natural generalization of the greedy policy

proposed in Kerimov et al. (2021b) for two-way matching networks. Both of these policies require

the knowledge of arrival rates and use match types that only lie in the optimal basis of the fluid

relaxation. The maximum-queue-sum policy of Kerimov et al. (2021b) is only guaranteed to have

constant regret for two-way matching networks where the residual network is acyclic, while the

sum-of-squares policy is shown to achieve constant regret for any matching network with positive

GPG.

We test the policies on three instances of dynamic matching problems. For each instance, we

simulate 1000 replications to estimate the expected performances of different policies. The first

instance in our experiments is a dynamic matching system with 6 types of agents, and 20 types

of matches, where each non-self-match is randomly generated where the probability of the agent

belonging to the match is 0.5, and the reward for each match m is randomly generated according

to a normal distribution with mean |A(m)|2 and standard deviation 0.1. The second instance in

our experiments is taken from Kerimov et al. (2021a), with the matching network and arrival rates

shown in Figure 2. The instance was constructed in Kerimov et al. (2021a) as an example that

the myopic policy, i.e., a policy that always realizes the available match with the highest reward in

each period, does not achieve bounded regret. The third instance in our experiments is a complete

bipartite matching system with 5 types of agents in each partite, i.e., all matches consist of at most

two agents, and for any two types of agents in different partites, there exists a match containing

them. All self-matches have a reward 0 and the reward for any two-way match is generated from

a normal distribution with mean 1 and standard deviation 0.001. The arrival rate of each agent

is generated from a normal distribution with mean 1 and standard deviation 0.1, then normalized

so that the sum of arrival rates is equal to 1. The bipartite instance is created because (i) the

maximum-queue-sum policy reduces to the greedy policy proposed in Kerimov et al. (2021b) which

was shown to have a constant regret, and (ii) the reward is selected such that although the optimal

3 When an agent arrives at time t, the policy realizes the match m that maximizes
∑

i∈A(m) qi(t), among all matches
in the optimal basis of the fluid relaxation, with qi(t)≥ 0 for all i∈A(m).
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basis for the fluid solution is unique, there are other solutions close to optimal, thus illustrating

the advantage of primal-dual policy which uses all match types instead of just the match types in

the optimal basis.

In all three instances, we find that our primal-dual policy with known arrival rates is consistently

the best policy in expected regret. Next, we discuss several specific observations we made for each

of the instances. In the first problem instance, there are 6 agent types and 20 randomly generated

multi-way matches. For this instance, Figure 1 demonstrates that primal-dual blind, despite not

knowing the arrival rates, achieves similar regret compared to sum-of-squares, while the primal-dual

with known arrival rates achieves about 15-20% lower regret than both. The regret for maximum-

queue-sum is much larger. This is expected, as unlike the other policies, the maximum-queue-sum

policy is not guaranteed to have constant regret because of multi-way matches. In addition, the two

primal-dual policies have the lowest expected number of waiting agents, followed by sum-of-squares

and maximum-queue-sum policies.
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Figure 1 The dynamic matching instance contains with 6 types of agents and 20 types of matches, where the

reward for each match m is randomly generated.

In the second instance, we use the example of Kerimov et al. (2021a), which has 7 agent types

and 4 multi-way matches. As shown in Figure 2, like the first instance, maximum-queue-sum also

has the biggest regret, demonstrating that it is not particularly suitable for matching problems

with multi-way matches. The primal-dual blind, sum-of-squares, and primal-dual policies all seem

to have constant regret, with primal-dual (with known arrival rates) having the lowest, followed

by sum-of-squares, then primal-dual blind. More specifically, the regret of the primal-dual policy

is about 20-30% lower than sum-of-squares. This difference is mainly attributed to the primal-dual

policy having a smaller number of waiting agents, as shown on the second plot in Figure 2. We also

note that maximum-queue-sum has the smallest number of agents waiting in the system. This is
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because the policy acts as a type of greedy policy that would rarely simultaneously have customers

of type 2, type 4 and type 6 waiting in the system, therefore rarely realizes match type 1, which

has a far larger reward than the other match types.
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Figure 2 Multiway matching instance taken from (Kerimov et al., 2021a, Figure 7) and (Gupta, 2021, Figure

2), where λ is a normalizing constant.

In the third instance, recall that we have a bipartite matching network with only two-way

matches. One important feature in the third instance is that due to our setup, the sum of the

arrival rates in one partition of the agents is close to that of the other partition. This feature

significantly increases the number of periods required for the policies to reach equilibrium. As

shown in Figure 3, none of the simulated policies seem to reach equilibrium by period 5000. Because

the third instance has a bipartite matching network, the maximum-queue-sum is very effective. It

achieves significantly lower regret than both sum-of-squares and primal-dual blind. Nevertheless,

the primal-dual policy with known arrival rates still achieves the lowest regret, and in this instance,

it is about 40% better than maximum-queue-sum and almost 60% better than sum-of-squares. For

the number of agents waiting, the order between primal-dual, maximum-queue-sum, and sum-of-

squares remains the same as regret. Interestingly, the primal-dual blind policy has the least number

of agents waiting. This is likely because the sample-average-approximated dual solution used in the

primal-dual blind policy tends to overestimate the arrival rates for agents waiting in the system at
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the beginning of the horizon, leading to the primal-dual blind being more aggressive in matching

the agents at the cost of losing future rewards.
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Figure 3 The dynamic matching instance where the matching network is a complete bipartite graph with 5 agent

types in each partite, where the reward of each match type and the arrival rate of each agent are

randomly generated.

6. Conclusion

In this work, we propose primal-dual dynamic matching policies that dynamically adjust a

Lagrangian multiplier for each agent type and use it to schedule matches. Compared to the primal-

dual policy of Nazari and Stolyar (2018) that achieves o(T ) regret, the critical innovation that

enabled our policies to achieve constant regret is to design a Lagrangian multiplier combining

both the dual solution of the approximated fluid relaxation and the inventory. This combination,

together with the GPG assumption, allows us to establish a negative drift to effectively control

the expected norm of the inventory vector, the pivotal result that leads to constant regret of

primal-dual policies.

Our primal-dual policies are the first to achieve constant regret at all times under unknown

arrival rates and unknown length of time horizon. When the arrival rate is known, our policies

match the optimal scaling in terms of GPG from the literature. In contrast to existing constant

regret policies that restrict matches to the optimal basis, our primal-dual policies are more flexible

in that they would use any match type that maximizes the reduced reward. This explains why our

policies enjoy superior numerical performances compared to the other constant regret policies in

the literature.

The design and analysis of the primal-dual dynamic matching policies presented in this work

lead to multiple interesting future directions. First, the idea of designing a Lagrangian multiplier
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combining both the dual solution of the approximated fluid relaxation and the inventory may

be applicable to other resource allocation models (see, e.g., Balseiro et al., 2021). Second, our

analysis of the primal-dual policies in this paper only applies to the model with a finite number of

agent types. It would be fascinating to understand how similar primal-dual policies work when the

number of agent types is infinite. Finally, it would be interesting to see whether the primal-dual

policies can be modified to analyze additional features in dynamic matching, such as unknown

reward vector, customer abandonment, fairness considerations, and adversarial arrivals.
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Appendix A: Additional Analysis on General Position Gap

In this section, we provide some additional analysis to complement the discussion of GPG in Section 3.1. In

Kerimov et al. (2021a), the authors defined the general position gap (referred to as K-GPG here) using the

optimal solution x∗ of (2), when the optimal solution is unique and non-degenerate.4 More specifically, assuming

x∗ has basis B, then the K-GPG is defined as minm∈B x∗m. The next lemma shows that K-GPG can be used to

determine a lower-bound on the GPG from our definition.

Lemma 8. Suppose that (2) has a basic optimal solution x∗ with basis B. Let ϵ′ =minm∈B x∗m, and v⊤m be the row

vector in M−1
B indexed by m. Then, the GPG for λ is at least

ϵ′

C1
∧
1−

∑
m∈B x∗m
C2

,

where C1 =minm∈B ∥vm∥2 and C2 =
∥∥∑

m∈B vm
∥∥
2
.

4 The formulation of Kerimov et al. (2021a) is slightly different with constraint set Mx ≤ λ. This is equivalent to
formulation (2) with the appropriate self-matches having zero rewards.
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Proof. We assume 1−
∑

m∈B x∗m > 0, as the lemma is trivially true when
∑

m∈B x∗m =1. By strong duality, we

have

min
U

L(U) =min
U,y

{
U⊤λ̂+ y

}
y+

∑
i∈A(m)

Ui ≥ rm, ∀m,

y≥ 0.

Let (U∗, y∗) be the optimal solution to the optimization problem above. By complementary slackness, as

1−
∑

m∈B x∗m > 0, we must have y∗ =0, and
∑

i∈A(m)U
∗
i ≥ rm for each m∈B. Also, let x̂=M−1

B λ̂. If x̂≥ 0 and

1−
∑

m∈B x̂m ≥ 0, then by complementary slackness, (U∗, y∗) is also the optimal solution if λ is replaced by λ̂.

Next, consider an arbitrary λ̂ with
∥∥∥λ̂−λ

∥∥∥
2
≤ ϵ. Then for any m∈B, by Cauchy-Schwartz,

v⊤m(λ− λ̂)≤
∥∥∥v⊤m∥∥∥

2

∥∥∥λ̂−λ
∥∥∥
2
≤C1ϵ

=⇒ v⊤mλ̂≥ v⊤mλ−C1ϵ≥ ϵ′ −C1ϵ

=⇒ v⊤mλ̂≥ 0 if ϵ≤ ϵ′

C1
.

Also by Cauchy-Schwartz, we have

∑
m∈B

v⊤m(λ̂−λ)≤

∥∥∥∥∥∑
m∈B

v⊤m

∥∥∥∥∥
2

∥∥∥λ− λ̂
∥∥∥
2
≤C2ϵ

=⇒ 1−
∑
m∈B

v⊤mλ̂≥ 1−
∑
m∈B

v⊤mλ−C2ϵ=1−
∑
m∈B

x∗m −C2ϵ

=⇒ 1−
∑
m∈B

v⊤mλ̂≥ 0 if ϵ≤
1−

∑
m∈B x∗m
C2

Therefore, if

ϵ=
ϵ′

C1
∧
1−

∑
m∈B x∗m
C2

,

then we have that (U∗, y∗) is still the optimal solution if λ is replaced by λ̂. This implies that λ has a GPG of

at least

ϵ′

C1
∧
1−

∑
m∈B x∗m
C2

.

Q.E.D.

Note that 1−
∑

m∈B x∗m = 0 only under the degenerate case where the optimal basic solution only contains

self-matches. Also, there is a relatively easy way to improve
1−

∑
m∈B x∗

m

C2

in Lemma 8. Namely, we can change

X by relaxing the
∑

m∈M xm ≤ 1 to
∑

m∈M xm ≤K for any integer K > 1, and allow the primal-dual policy

defined in Algorithm 1 to schedule K matches instead of 1 match in each period. This change would improve the

second term
1−

∑
m∈B x∗

m

C2

to
K−

∑
m∈B x∗

m

C2

. However, the change is not really practical, as the term
1−

∑
m∈B x∗

m

C2

is in general much larger than ϵ′

C1

, and allowing K matches instead of 1 match in each period only increases

the variations δ(t), therefore degrading our policy performance.

In addition, we remark that both C1 and C2 are constants that depend on M but are independent of λ.

Therefore, one considers matrix M to be fixed as in Kerimov et al. (2021a), then our GPG has at least the

same magnitude as the K-GPG.
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Appendix B: Properties of the Dual Solution

Here, we provide a lemma showing that any optimal solution for the dual problem without the constraint∑
m∈M xm ≤ 1 is also an optimal solution for the dual problem with the constraint.

Lemma 9. Let λ be any non-negative vector in which
∑n

i=1 λi =1. Let Û be an optimal solution of

min
U∈Rn

U⊤λ, s.t.
∑

i∈A(m)

Ui ≥ rm, ∀m.

T hen it is also an optimal solution of

min
U∈Rn

Lλ(U) = min
U∈Rn

max
x∈X

(
r⊤ −U⊤M

)
x+U⊤λ ,

where we recall that X = {x |x∈Rd
≥0,
∑

m∈M xm ≤ 1}. Furthermore, we have∥∥∥Û∥∥∥
∞

≤ rmax and
∥∥∥Û∥∥∥

2
≤
√
nrmax.

Proof. First, we show that Û is an optimal solution of minU∈Rn Lλ(U). It suffices to show that

min
U∈Rn

Lλ(U) = min
U∈Rn:r−M⊤U≤0

U⊤λ .

For any U ∈ Rn such that maxi(r−M⊤U)i > 0, define U ′
i = Ui + v for all i ∈ [n], where v =maxi(r−M⊤U)i.

Then r−M⊤U ′ ≤ 0 and hence Lλ(U
′) =U ′⊤λ. Also, note that Lλ(U) = v+U⊤λ. Therefore,

Lλ(U
′)−Lλ(U) = (U ′ −U)⊤λ− v= v

n∑
i=1

λi − v≤ 0.

Hence,

min
U∈Rn

Lλ(U) = min
U∈Rn:r−M⊤U≤0

Lλ(U) = min
U∈Rn:r−M⊤U≤0

U⊤λ.

It remains to prove that
∥∥∥Û∥∥∥

∞
≤ rmax and

∥∥∥Û∥∥∥
2
≤

√
nrmax. By Assumption 1 and feasibility of Ûi, we have

Ûi ≥ ri ≥ 0. Also, by optimality of Û , we have that for all i ∈ [n], Ûi ≤ rmax as otherwise, we can decrease Ûi

and still obtain a feasible solution. Therefore, we have∥∥∥Û∥∥∥
∞

≤ rmax.

For
∥∥∥Û∥∥∥

2
, we have that

∥∥∥Û∥∥∥2
2
≤ n

∥∥∥Û∥∥∥2
∞

≤ nr2max. Q.E.D.

Appendix C: Additional Proofs

Here, we provide the proofs for some of our technical results which are fairly standard given the literature.

C.1. Proof of Proposition 1

Proof. By the definition given in (5),

L
λ̂
(U) =max

x∈X

〈
r−M⊤U,x

〉
+
〈
U, λ̂

〉
=Lλ(U)+

〈
U, λ̂−λ

〉
.

Therefore,

L
λ̂
(U)−L

λ̂
(U∗) = Lλ(U)−Lλ(U

∗)+
〈
U −U∗, λ̂−λ

〉
. (35)

Cond.1 ⇒ Cond.2: By the duality between ∥·∥ and ∥·∥∗, we can choose λ̂ such that
∥∥∥λ̂−λ

∥∥∥ = ϵ and〈
U −U∗, λ̂−λ

〉
=−ϵ∥U −U∗∥∗. Thus, in view of L

λ̂
(U)≥L

λ̂
(U∗), we deduce from (35) that

Lλ(U)−Lλ(U
∗)≥ ϵ

∥∥U −U∗∥∥
∗ .
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Cond.2 ⇒ Cond.1: Combining (35) with Cond.2 yields that for all
∥∥∥λ̂−λ

∥∥∥≤ ϵ,

L
λ̂
(U)−L

λ̂
(U∗)≥ ϵ

∥∥U −U∗∥∥+〈U −U∗, λ̂−λ
〉
≥ 0,

where the last inequality holds by the duality between ∥·∥ and ∥·∥∗. Therefore, U
∗ is an optimal solution to

L
λ̂
(U) for all

∥∥∥λ̂−λ
∥∥∥≤ ϵ. Q.E.D.

C.2. Proof of Corollary 2

In this section, we prove that the regret is O(
√
T ) by setting Vt =

√
t and Û(t) =U∗ when the GPG is possibly

zero. In particular, suppose Û(t) =U∗. Recall from (28) that

E
[
∥δ(t+1)∥22 | Ft

]
≤ ∥δ(t)∥22 +B− 2Vt

(
Lλ(U(t))−Lλ(U

∗)
)
. (36)

For any given constant γ > 0, pick λ̂ such that
∥∥∥λ− λ̂

∥∥∥
2
= γ and〈

U(t)−U∗, λ− λ̂
〉
= γ

∥∥U(t)−U∗∥∥
2
.

Note that

Lλ(U(t))−Lλ(U
∗) =L

λ̂
(U(t))−L

λ̂
(U∗)+

〈
U(t)−U∗, λ− λ̂

〉
. (37)

Furthermore, by definition

L
λ̂
(U(t))≥

〈
r−M⊤U(t), x̂

〉
+
〈
U(t), λ̂

〉
= ⟨r, x̂⟩ ,

where x̂∈ argmaxx

{
⟨r,x⟩ :Mx= λ̂, x∈X

}
. Also,

L
λ̂
(U∗) =max

x∈X

〈
r−M⊤U∗, x

〉
+
〈
U∗, λ̂

〉
=
〈
r−M⊤U∗, x∗

〉
+
〈
U∗, λ̂

〉
=
〈
r,x∗

〉
+
〈
U∗, λ̂−λ

〉
≤
〈
r,x∗

〉
+γ

∥∥U∗∥∥
2
.

Assembling the above four displayed equations, we get that

Lλ(U(t))−Lλ(U
∗)≥ γ

∥∥U(t)−U∗∥∥
2
+
〈
r, x̂−x∗

〉
− γ

∥∥U∗∥∥
2
.

Since 0≤ rm ≤ rmax for all match m∈M, it follows that ⟨r, x̂−x∗⟩ ≥−rmax. Also, recall that ∥U∗∥2 ≤
√
nrmax.

We get that

Lλ(U(t))−Lλ(U
∗)≥ γ

∥∥U(t)−U∗∥∥
2
−
(
1+

√
nγ
)
rmax.

In conclusion, we get that

E
[
∥δ(t+1)∥22 | Ft

]
≤ ∥δ(t)∥22 +B+2

(
1+

√
nγ
)
rmaxVt − 2γ ∥δ(t)∥2

Choosing Vt =
√
t, and invoking Lemma 5, we get that

E [∥δ(t)∥2]≤O
(
B+

√
nrmax

√
T
)
, ∀t≤ T.

It then follows from Proposition 2 that

t
〈
r,x∗

〉
−

t∑
s=1

E [⟨r,x(s)⟩]≤O(
√
T ), ∀t≤ T.
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C.3. Proof of Lemma 5

Proof. Following Gupta (2021), let Γ(t) denote a reflected random walk with step size K, reflected boundary

Γmin =
(
1+

⌈
D
K

⌉)
K, initial condition Γ(0) =Γmin, and

Γ(t+1)= max{Γ(t)+ ξ(t)K,Γmin} for t≥ 0 ,

where ξ(t) are i.i.d. random variables taking the value +1 with probability 1
2 − η

2K , and −1 with probability
1
2 + η

2K .

By (Gupta, 2021, Lemma 3), Ψ(t)≤icx Γ(t) for all t≥ 0, where for any X,Y ∈Rn, X ≤icx Y means that X is

dominated by Y in the increasing convex order, that is, E [f(X)]≤E [f(Y )] for any increasing convex function

f :Rn →R with valid expectation. It follows that that for any t≥ 0,

E [Ψ(t)]≤ E [Γ(t)] . (38)

Define ρ≜
1

2
− η
2K

1

2
+ η
2K

= K−η
K+η . By (Cox and Miller, 2017, Section 2.2, eq. (52)), {Γ(t)} has a unique steady state

distribution under which

E [Γ∞] = Γmin +K
ρ

1− ρ
= Γmin +K

(
K − η

2η

)
. (39)

Next, we construct Γ′(t) such that Γ′(0)
d
=Γ∞ follows a steady state distribution, and for any t≥ 0, Γ′(t+1)=

max{Γ′(t)+ ξ(t)K,Γmin}. By induction, we have Γ(t)≤Γ′(t) for all t≥ 0. Therefore,

E [Γ(t)]≤E
[
Γ′(t)

]
=E [Γ∞] , (40)

where the last inequality holds because Γ′(t)
d
=Γ∞ by construction. Combining (38), (39) and (40) yields the

desired result (29). Q.E.D.

C.4. Proof of Lemma 6

Proof. By Definition 1,

P
{
Û(t) ̸=U∗

}
≤ P

{∥∥∥λ̂(t)−λ
∥∥∥
2
> ϵ
}
. (41)

It remains to establish the concentration inequality for
∥∥∥λ̂(t)−λ

∥∥∥
2
. First,

E
[∥∥∥λ̂(t)−λ

∥∥∥2
2

]
=E

 n∑
i=1

(
1

t

t∑
s=1

Ai(s)−λi

)2
=

1

t

n∑
i=1

λi(1−λi)≤
1

t
.

Thus, by Jensen’s inequality,

E
[∥∥∥λ̂(t)−λ

∥∥∥
2

]
≤

√
E
[∥∥∥λ̂(t)−λ

∥∥∥2
2

]
≤
√

1

t
.

Note that the function f : (A(1), . . . ,A(t))→
∥∥∥λ̂−λ

∥∥∥
2
satisfies the bounded difference property with parameter

2/t, that is, for any s∈ [t] and any A(1), . . . ,A(t),A′(s),∣∣f (A(1), . . . ,A(s− 1),A(s),A(s+1), . . . ,A(t))− f
(
A(1), . . . ,A(s− 1),A′(s),A(s+1), . . . ,A(t)

)∣∣
≤ 1

t

∥∥A(s)−A′(s)
∥∥
2
≤ 2

t
.

Thus, by McDiarmid’s inequality, for any ∆> 0,

P
{∥∥∥λ̂(t)−λ

∥∥∥
2
≥E

[∥∥∥λ̂(t)−λ
∥∥∥
2

]
+
√
∆/t

}
≤ exp

(
− 2∆/t

t(2/t)2

)
= exp(−∆/2).
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Combining the last two displayed equations gives that

P

{∥∥∥λ̂(t)−λ
∥∥∥
2
≥
√

1

t
+

√
∆

t

}
≤ exp(−∆/2).

If ∆≥ 1, then this further implies that

P

{∥∥∥λ̂(t)−λ
∥∥∥
2
≥ 2

√
∆

t

}
≤ 2exp(−∆/2);

If ∆≤ 1, then the above is true trivially, as 2exp(−∆/2)≥ 2exp(−1/2)≥ 1. Therefore, by letting ϵ= 2
√
∆/t,

we deduce that

P
{∥∥∥λ̂(t)−λ

∥∥∥
2
≥ ϵ
}
≤ 2exp(−tϵ2/8).

Finally, plugging the last displayed equation into (41) and summing over all t≥ 1, we get that

∞∑
t=1

P
{
Û(t) ̸=U∗

}
≤

∞∑
t=1

2exp(−tϵ2/8)≤ 2

exp(ϵ2/8)− 1
≤ 16

ϵ2
, (42)

where the last equality holds because exp(x)≥ 1+x. Q.E.D.
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